
VIT Recognition System API

Contents

Introduction 2

Classes and interfaces 2
First application 2
Step 1. Connecting to VIT Recognition System 2
Step 2. Setting up the recognition 5
Step 3. Asynchronous recognition 8

Variant 1. Recognition with events 14
Variant 2. Recognition with tasks 15

Simple client example (full listing) 16
Simple client example with tasks (full listing) 17

Frequently asked questions 18
(about sufficient number of IRecognitionClient instances) 18
(about usage of more than one client) 19
(about requirements for GUIDs) 19
(about recognition settings parameters) 19
(about telling apart the IRecognitionRequestsSourceSettings instances) 20
(about sending multiple recognition requests) 20
(about open recognition requests limit) 20
(about recognition speed) 20
(about recognition requests locks) 20

Sample GUI client 20

1

VIT Recognition System API

Introduction
VitML.Recognition.Client.dll is the .NET Framework assembly that allows .NET Framework
applications to communicate with VIT Recognition System.

The assembly is delivered as VitML.Recognition.Client.zip archive. The archive contains the
following folders:

● Samples — some simple samples of code for quick integration;
● VitML.Recognition.Client — the assembly and its dependencies;
● VitML.Recognition.Client.TestClient — sample client application (.NET, WPF);
● VitML.Recognition.Client.TestClient_src — source files of the sample client application.

The current document contains two main sections:

● “Classes and interfaces” — will guide you through the VIT Recognition System API.
● “Sample GUI client” — will introduce you to a sample GUI application that demonstrates the

operation of VIT Recognition System API.

Classes and interfaces

First application
In the Samples folder, you will find a first_API_usage_sample.cs file. The file provides an
example of a simple client code which communicates with VIT Recognition System. This code is
also provided after the description of classes and interfaces defined in the assembly.
Alternatively you can check a first_API_usage_sample_tasks.cs file that contains similar
integration code but with C# Tasks.

Step 1. Connecting to VIT Recognition System
First of all, you need to connect your program to the VIT Recognition System. Create an instance of
the RecognitionClient class:

namespace VitML.Recognition.Client
{

2

VIT Recognition System API

public class RecognitionClient : IRecognitionClient
{

public RecognitionClient(IConnectionSettings aConnectionSettings);
}

}

The constructor of the RecognitionClient class requires an instance of object that implements
IConnectionSettings interface:

namespace VitML.Recognition.Client.Base
{

 /// <summary>
 /// Settings for recognition database connection
 /// </summary>
 public interface IConnectionSettings
 {

 /// <summary>
 /// Recognition database host machine IP-address
 /// </summary>
 string Host { get; }

 /// <summary>
 /// Recognition database port
 /// </summary>
 int Port { get; }

 /// <summary>
 /// Recognition access username
 /// </summary>
 string User { get; }

 /// <summary>
 /// Recognition access password
 /// </summary>
 string Password { get; }

 /// <summary>
 /// Recognition database name
 /// </summary>
 string DataBaseName { get; }
 }

}

There is a default implementation of the IConnectionSettings interface called
ConnectionSettings class that has default property values:

3

VIT Recognition System API

private const string HostDefaultValue = "127.0.0.1";
private const int PortDefaultValue = 5432;
private const string UserDefaultValue = "autocode";
private const string PasswordDefaultValue = "autocode";
private const string DatabasenameDefaultValue = "autocode";

The IRecognitionClient interface (of the RecognitionClient class) defines the public API of the
VIT Recognition System:

namespace VitML.Recognition.Client.Base
{

 /// <summary>
 /// Represents a client for the Vit Recognition System
 /// </summary>
 public interface IRecognitionClient : IDisposable
 {

 /// <summary>
 /// Occurs when the recognition request is handled and the recognition request
result is received

 /// </summary>
 event EventHandler<RecognitionRequestResultEventArgs> RecognitionRequestResult;

 /// <summary>
 /// Sets settings of a recognition requests source. If the recognition requests
source does not exist, this method creates it.

 /// </summary>
 /// <param name="aRecognitionRequestsSourceSettings">Settings of a recognition
requests source</param>

 /// <exception cref="VitML.Recognition.Client.RecognitionClientException">
 /// Thrown if an error occurs while updating recognition requests source
settings

 /// </exception>
 void CreateOrUpdateRecognitionRequestsSource(IRecognitionRequestsSourceSettings
aRecognitionRequestsSourceSettings);

 /// <summary>
 /// Sends a recognition request to the server.
 /// </summary>
 /// <param name="req">A recognition request</param>
 /// <exception cref="VitML.Recognition.Client.RecognitionClientException">
 /// Thrown if an error occurs while sending the recognition requests to the
server

 /// </exception>

4

VIT Recognition System API

 /// <returns>The recognition request id</returns>
 Guid SendRecognitionRequest(IRecognitionRequest req);

 /// <summary>
 /// Sends a recognition request to the server.
 /// </summary>
 /// <param name="req">A recognition request</param>
 /// <exception cref="VitML.Recognition.Client.RecognitionClientException">
 /// Thrown if an error occurs while sending the recognition requests to the
server

 /// </exception>
 /// <returns>Recognition task</returns>
 Task<IRecognitionRequestResult> Recognize(IRecognitionRequest req);
 }

}

Example (taken from first_API_usage_sample.cs):

//create default server connection settings

IConnectionSettings connectionSettings = new ConnectionSettings();
//create recognition client for the server

IRecognitionClient recognitionClient = new RecognitionClient(connectionSettings);

Step 2. Setting up the recognition
Before sending the recognition requests, you have to specify the options of license plate
recognition. This may be done with CreateOrUpdateRecognitionRequestsSource method of
RecognitionClient class. It receives an instance of the object that implements an
IRecognitionRequestsSourceSettings interface:

namespace VitML.Recognition.Client.Base
{

 /// <summary>
 /// Contains a set of settings for the recognition requests source.
 /// A recognition request source is the a notion that contains a set of recognition
settings and associates them with unique id.

 /// In most of cases the recognition request source is associated with the camera.
 /// If recognition settings is suitable for images from two or more cameras you can
consider all of the cameras as one recognition requests source.

 /// </summary>
 public interface IRecognitionRequestsSourceSettings
 {

 /// <summary>

5

VIT Recognition System API

 /// Gets the id of the recognition requests source.
 /// The user is responsible for the uniqueness of the id.
 /// </summary>
 Guid Id { get; }

 /// <summary>
 /// Gets the name of the recognition requests source.
 /// </summary>
 string Name { get; }

 /// <summary>
 /// Gets the minimum size (in pixels) of license plates images. If their sizes
are less than this value, the system will ignore such license plates.

 /// </summary>
 uint LicensePlateSizeMin { get; }

 /// <summary>
 /// Gets the maximum size (in pixels) of license plates images. If their sizes
exceed this value, the system will ignore such license plates.

 /// </summary>
 uint LicensePlateSizeMax { get; }

 /// <summary>
 /// Gets the maximum count of star symbols which is used in order to substitute
unrecognized symbols. If the count of unrecognized symbols exceeds this value the system

ignores the license plate.

 /// </summary>
 uint LicensePlateStarMaxCount { get; }

 /// <summary>
 /// Gets the minimum value of the recognition validity. If the recognition
validity is less than this value the system ignores the license plate.

 /// </summary>
 uint LicensePlateValidityMin { get; }

 /// <summary>
 /// Gets the list of license plate templates which the system have to recognize.
 /// </summary>
 IEnumerable<ILicensePlateTemplate> LicensePlateTemplates { get; }

 /// <summary>
 /// Gets the list of vertexes of the area on the image where the system have to
recognize.

 /// </summary>
 IEnumerable<IVertex> Vertexes { get; }
 }

}

6

VIT Recognition System API

The default implementation of this interface is provided by the
RecognitionRequestsSourceSettings class:

namespace VitML.Recognition.Client
{

 public class RecognitionRequestsSourceSettings : IRecognitionRequestsSourceSettings
 {

 public RecognitionRequestsSourceSettings(Guid aId, string aName);
 }

}

The RecognitionRequestsSourceSettings constructor requires two arguments: an ID and the
name of the recognition requests source. The notion of the recognition source name allows to group
the recognition settings into a set with the unique identifier. For example, there might be a set of
settings specified for some Camera object which requests recognition information.

Example (taken from first_API_usage_sample.cs):

// create id for a new RecognitionRequestsSource (set of recognition settings)

Guid recSourceGuid = Guid.NewGuid();
// create name for a new RecognitionRequestsSource (set of recognition settings)

const string recSourceName = "Camera_X";
// create a IRecognitionRequestsSourceSettings instance

var recSourceSettings =
new RecognitionRequestsSourceSettings(recSourceGuid, recSourceName);

// add new RecognitionRequestsSource (set of recognition settings) to the server

recognitionClient.CreateOrUpdateRecognitionRequestsSource(recSourceSettings);

Also, you can speed up the plate recognition by excluding areas that are certain to not contain an
image of a license plate. To do this, use the Vertexes property of the
RecognitionRequestsSourceSettings class. This property allows you to set a list of polygon
vertices that describes an area of interest. The coordinates of a vertex are counted from the top left
corner of a frame. Each vertex can be represented by an instance of the object that implements an
IVertex interface:

namespace VitML.Recognition.Client.Base
{

 public interface IVertex
 {

 float X { get; }
 float Y { get; }
 }

7

VIT Recognition System API

}

The default implementation of this interface is the Vertex class:

namespace VitML.Recognition.Client
{

 public class Vertex : IVertex
 {

 public Vertex(float aX, float aY);
 }

}

Be careful, as CreateOrUpdateRecognitionRequestsSource method may throw an
RecognitionClientException in a case of an error:

namespace VitML.Recognition.Client
{

 public class RecognitionClientException : Exception
 {

 public int ErrorCode { get; private set; }

public RecognitionClientException(int aErrorCode, string aMessage, Exception

aInnerException);
 }

}

Step 3. Asynchronous recognition
To perform the recognition action you should prepare an instance of object, that implements
IRecognitionRequest interface and holds the recognition request data and options:

namespace VitML.Recognition.Client.Base
{

 /// <summary>
 /// Represents a recogntion request.
 /// </summary>
 public interface IRecognitionRequest
 {

 int Id { get; set; }

 Guid Guid { get; set; }

8

VIT Recognition System API

 /// <summary>
 /// Gets the jpeg image that the system have to recognize.
 /// </summary>
 byte[] Image { get; }

 /// <summary>
 /// Gets the id of the recognition requests source.
 /// </summary>
 Guid RecognitionRequestsSourceId { get; }

 /// <summary>
/// Gets the user's context. The context will include in the recognition request

result.

 /// </summary>
 string Context { get; }

 /// <summary>
/// Gets the value that indicate whether include plate image to the result of

the request.

 /// </summary>
 bool ReceivePlateImage { get; }

 /// <summary>
/// Gets the value that indicate whether include car image to the result of the

request.

 /// </summary>
 bool ReceiveBodyImage { get; }

 /// <summary>
/// Gets the value that indicate whether include full image to the result of the

request.

 /// </summary>
 bool ReceiveFullImage { get; }

 /// <summary>
 /// Gets or sets request's timestamp.
 /// </summary>
 DateTime TimeStamp { get; set; }

 /// <summary>
 /// Create light copy of IRequest. Used for storing sent request in memory.
 /// </summary>
 /// <returns></returns>
 IRecognitionRequest LightCopy();
 }

}

9

VIT Recognition System API

The IRecognitionRequest interface is implemented by the RecognitionRequest class:

namespace VitML.Recognition.Client
{

 public class RecognitionRequest : IRecognitionRequest
 {

 public RecognitionRequest(Guid aRecognitionRequestsSourceId, byte[] aImage);
 }

}

The recognition result is described with IRecognitionRequestResult interface:

namespace VitML.Recognition.Client.Base
{

 /// <summary>
 /// Represents result for the recognition request
 /// </summary>
 public interface IRecognitionRequestResult
 {

 /// <summary>
 /// Gets the unique id of the license plate
 /// </summary>
 Guid Id { get; }

 /// <summary>
 /// Gets the status of the recogntion request.
 /// </summary>
 Status Status { get; }

 /// <summary>
 /// Gets the recognition result information
 /// </summary>
 RecognitionResult RecognitionResult { get; }

 /// <summary>
 /// Gets the user's context that was passed by the user with the recognition
request.

 /// </summary>
 string Context { get; }

 /// <summary>
 /// Gets the license plate image.
 /// </summary>
 byte[] PlateImage { get; }

10

VIT Recognition System API

 /// <summary>
 /// Gets the car image.
 /// </summary>
 byte[] BodyImage { get; }

 /// <summary>
 /// Get the full image.
 /// </summary>
 byte[] FullImage { get; }
 }

}

The Status enumeration is defined as follows:

namespace VitML.Recognition.Client
{

 public enum Status
 {

 Failed = 0,
 Timeout = 1,
 Succeed = 2
 }

}

Status.Succeed is returned when plate was recognized in request image.
Status.Failed is returned when there was no plate in request image.
Status.Timeout is returned when request is processing more than timeout time.

The RecognitionResult object has properties that contain all information about plate recognition.
The corresponsing types are:

namespace VitML.Recognition.Client
{

 public class RecognitionResult
 {

 public DateTime BestTimestamp { get; private set; }
 public long Id { get; private set; }
 public Guid Guid { get; private set; }
 public int Lane { get; private set; }
 public VehicleInfo Vehicle { get; private set; }
 public int Image { get; private set; }
 public PlateInfo Plate { get; private set; }
 public PostInfo Post { get; private set; }

11

VIT Recognition System API

 public ChannelInfo Channel { get; private set; }

 public RecognitionResult(
 string besttsfmt,
 long id,
 Guid guid,
 int lane,
 VehicleInfo vehicle,
 int image,
 PlateInfo plate,
 PostInfo post,
 ChannelInfo channel
);

 }

 public class VehicleInfo
 {

 public string Category { get; private set; }
 public double Length { get; private set; }
 public double Weight { get; private set; }
 public double Width { get; private set; }

 public VehicleInfo(
 string category,
 double length,
 double weight,
 double width);
 }

 public class PlateInfo
 {

 public string BackgroundColor { get; private set; }
 public string Color { get; private set; }
 public int CountryCode { get; private set; }
 public int CountyCode { get; private set; }
 public string Country { get; private set; }
 public int Template { get; private set; }
 public string Text { get; private set; }
 public int Validity { get; private set; }
 public PlateRectangle Rectangle { get; private set; }

 public PlateInfo(
 string bcolor,
 string color,
 int country,
 int county,
 string strcountry,

12

VIT Recognition System API

 int template,
 string text,
 int validity,
 PlateRectangle rect);
 }

 public class PlateRectangle
 {

 public int Bottom { get; private set; }
 public int Left { get; private set; }
 public int Right { get; private set; }
 public int Top { get; private set; }

 public PlateRectangle(int bottom, int left, int right, int top);
 }

 public class PostInfo
 {

 public Guid Guid { get; private set; }
 public long Id { get; private set; }
 public string Name { get; private set; }

 public PostInfo(Guid guid, long id, string name);
 }

 public class ChannelInfo
 {

 public string Description { get; private set; }
 public long Id { get; private set; }
 public string Name { get; private set; }

 public ChannelInfo(string description, long id, string name);
 }

}

There are 2 ways to perform plate recognition action:

1. With events.
2. With tasks.

Variant 1. Recognition with events
As you have already created a recognition requests source , in order to receive a recognition
request result, you should subscribe to the RecognitionRequestResult event of delegate type
EventHandler<RecognitionRequestResultEventArgs>.

Example of subscription (taken from first_API_usage_sample.cs):

13

VIT Recognition System API

// subscribe on the recognition result events
recognitionClient.RecognitionRequestResult += RecognitionRequestResultEventHandler;

//...
private static void RecognitionRequestResultEventHandler(object sender,

RecognitionRequestResultEventArgs e)
{
 //...
}

The sender parameter is a reference to the object, that invoked the event.
The type of the e parameter is a RecognitionRequestResultEventArgs:

namespace VitML.Recognition.Client
{

 /// <summary>
 /// Provides data for the VitML.Recognition.Client.RecognitionRequestResult event
 /// </summary>
 public class RecognitionRequestResultEventArgs : EventArgs
 {

 /// <summary>
 /// Gets the result for the recognition request
 /// </summary>
 public IRecognitionRequestResult RecognitionRequestResult { get; private set; }

 public RecognitionRequestResultEventArgs(IRecognitionRequestResult
aRecognitionRequestResult);
 }

}

Send recognition requests by calling the SendRecognitionRequest method. The method requires
the IRecognitionRequest as an argument.

Example (taken from first_API_usage_sample.cs):

// get image that we want to recognize

byte[] imageBytes = new byte[0];
// create recognition request

var recognitionRequest = new RecognitionRequest(recSourceGuid, imageBytes);
// send recognition request

recognitionClient.SendRecognitionRequest(recognitionRequest);

14

VIT Recognition System API

After the recognition completes on server, the recognition result will be available in a subscribed
method as the RecognitionRequestResult property of the RecognitionRequestResultEventArgs
instance (taken from first_API_usage_sample.cs):

private static void RecognitionRequestResultEventHandler(object sender,
RecognitionRequestResultEventArgs e)

{
IRecognitionRequestResult recRequestResult = e.RecognitionRequestResult;
Status status = recRequestResult.Status;
if (Status.Succeed == status)
{

string plateText = recRequestResult.RecognitionResult.Plate.Text;
string plateCountry = recRequestResult.RecognitionResult.Plate.Country;
Console.WriteLine("Plate: '{0}' ({1})", plateText, plateCountry);

}
}

Variant 2. Recognition with tasks
The alternative way to perform recognition is to call Recognize method which returns an instance of
Task<IRecognitionRequestResult>:

Task<IRecognitionRequestResult> Recognize(
 IRecognitionRequest recognitionRequest,
 CancellationToken cancellationToken = default(CancellationToken));

This method requires an IRecognitionRequest and the optional CancellationToken arguments.
With the instance of CancellationToken you can cancel recognition task if it takes too long to
complete.

Code sample (from first_API_usage_sample_tasks.cs file):

// async recognition with task
IRecognitionRequestResult recognitionRequestResult = await
recognitionClient.Recognize(recognitionRequest);
Status status = recognitionRequestResult.Status;
if (Status.Succeed == status)
{

string plateText = recognitionRequestResult.RecognitionResult.Plate.Text;
string plateCountry = recognitionRequestResult.RecognitionResult.Plate.Country;
Console.WriteLine("Plate: '{0}' ({1})", plateText, plateCountry);

}
else if (Status.Failed == status)
{

Console.WriteLine("Recognition failed");
}

15

VIT Recognition System API

Simple client example (full listing)

using System;
using VitML.Recognition.Client;
using VitML.Recognition.Client.Base;

namespace ExampleClientApplication
{

 internal class Program
 {

 private static void Main(string[] args)
 {

 // create default server connection settings
 var connectionSettings = new ConnectionSettings {Host = "127.0.0.1"};
 // create recognition client for the server
 var recognitionClient = new RecognitionClient(connectionSettings);
 // subscribe on the recognition result events
 recognitionClient.RecognitionRequestResult +=
 RecognitionRequestResultEventHandler;

 // create id for a new RecognitionRequestsSource (set of recognition
settings)

 Guid recSourceGuid = Guid.NewGuid();
 // create name for a new RecognitionRequestsSource (set of recognition
settings)

 const string recSourceName = "Camera_X";
 // create a IRecognitionRequestsSourceSettings instance
 var recSourceSettings =
 new RecognitionRequestsSourceSettings(recSourceGuid, recSourceName);
 // add new RecognitionRequestsSource (set of recognition settings) to the
server

recognitionClient.CreateOrUpdateRecognitionRequestsSource(recSourceSettings);

 // get image that we want to recognize
 byte[] imageBytes = new byte[0];
 // create recognition request
 var recognitionRequest = new RecognitionRequest(recSourceGuid, imageBytes);
 // send recognition request
 recognitionClient.SendRecognitionRequest(recognitionRequest);
 }

 private static void RecognitionRequestResultEventHandler(object sender,

16

VIT Recognition System API

 RecognitionRequestResultEventArgs e)
 {

 IRecognitionRequestResult recRequestResult = e.RecognitionRequestResult;
 Status status = recRequestResult.Status;
 if (Status.Succeed == status)
 {

 string plateText = recRequestResult.RecognitionResult.Plate.Text;
 string plateCountry = recRequestResult.RecognitionResult.Plate.Country;
 Console.WriteLine("Plate: '{0}' ({1})", plateText, plateCountry);
 }

 }

 }

}

Simple client example with tasks (full listing)

using System;
using VitML.Recognition.Client;
using VitML.Recognition.Client.Base;

namespace ExampleClientApplication
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 // create recognition client for the server
 var recognitionClient = new RecognitionClient(
 connectionSettings: new ConnectionSettings
 {
 Host = "127.0.0.1"
 });

 // create a IRecognitionRequestsSourceSettings instance
 var recSourceSettings =
 new RecognitionRequestsSourceSettings(
 aId: Guid.NewGuid(),
 aName: "Camera_X");

 // add new RecognitionRequestsSource (set of recognition settings) to the
server

recognitionClient.CreateOrUpdateRecognitionRequestsSource(recSourceSettings);

 // create recognition request
 var recognitionRequest = new RecognitionRequest(

17

VIT Recognition System API

 aRecognitionRequestsSourceId: recSourceSettings.Id,
 aImage: new byte[0]); // get image that we want to recognize

 // async recognition with task

 Task.Run(async () =>
 {

 IRecognitionRequestResult recognitionRequestResult = await
recognitionClient.Recognize(recognitionRequest);

Status status = recognitionRequestResult.Status;
if (Status.Succeed == status)
{

string plateText =
recognitionRequestResult.RecognitionResult.Plate.Text;

string plateCountry =
recognitionRequestResult.RecognitionResult.Plate.Country;

Console.WriteLine("Plate: '{0}' ({1})", plateText,
plateCountry);

}
else if (Status.Failed == status)
{

Console.WriteLine("Recognition failed");
}

});
 }
 }
}

Frequently asked questions

(about sufficient number of IRecognitionClient instances)
How many IRecognitionClient instances are required? One per server, one per camera, one
per request?

The client application requires at least one instance of IRecognitionClient per server.

(about usage of more than one client)
Let's say I want to use multiple cameras. What is the right way to do it? I need as many
connections/clients representing as many cameras as I have? Alternatively, can I use one
connection, so I can differentiate somehow between cameras while sending the requests?

You can use any number of clients. You can define a post for each camera by calling the
CreateOrUpdateRecognitionRequestsSource method. When you receive a result you get a post
GUID value from RecognitionResult.Post.Guid property value:

18

VIT Recognition System API

IRecognitionRequestResult recognitionRequestResult = e.RecognitionRequestResult;
Guid postGuid = recognitionRequestResult.RecognitionResult.Post.Guid;

So, you can map a post with a specific camera used by you. When you send a request by calling
the SendRecognitionRequest method of the IRecognitionClient instance, you have to pass a
post/camera GUID in order to determine for which post/camera the result comes (as in the
example).

In order to avoid misunderstanding, please note that the recognition results source notion, which is
used by the CreateOrUpdateRecognitionRequestsSource and SendRecognitionRequest
methods, is a synonym for a post or a camera in the context that we have just considered.

(about requirements for GUIDs)
Are there any requirements for GUIDs (IDs of the recognition request sources)?

There are no special requirements for GUID values. In case of any issues (incorrect operation of
your system), check the following:

● values defined by calling the CreateOrUpdateRecognitionRequestsSource method are
correct;

● recognition settings that you have defined for the post are correct.

(about recognition settings parameters)
What parameters do we exactly need for the settings? Can I manually do the set-up once
(directly on the server), but use the settings later? In this case, I would be able to send the
requests only, not the settings, so this would significantly speed up my work.

All the needed settings are defined as properties of the IRecognitionRequestsSourceSettings
class. Its constructor explicitly requires two values (see the definition), but other parameters have
default values.

You have to send the settings only when you want to create a new set or update the already
existing one.

(about telling apart the IRecognitionRequestsSourceSettings instances)
How can I differentiate between various instances of IRecognitionRequestsSourceSettings?

Client application assigns the unique ID to each IRecognitionRequestsSourceSettings instance.

19

VIT Recognition System API

(about sending multiple recognition requests)
Do I have to call CreateOrUpdateRecognitionRequestsSource or can I just send in the
images?

You can perform SendRecognitionRequest call to the Vit Recognition Server only when you have
registered a recognition post with CreateOrUpdateRecognitionRequestsSource. If the post is
registered you can send multiple recognition requests to that post.

(about open recognition requests limit)
Is there a limit of open requests?

No. There is no limit for open recognition requests.

(about recognition speed)
How often can I send the recognition requests?

It is recommended to send requests not often than 1 frame per second. If you’ll send requests more
often than this, the server recognitions queue will become full and all next requests will have
timeout recognition result.

(about recognition requests locks)
Do I have to lock calls to SendRecognitionRequest?

No. There are locks in all requests to VitRecognitionServer inside an assembly implementation.

Sample GUI client
Application: VitML.Recognition.Client.TestClient.exe
Location (within the delivered package): VitML.Recognition.Client.TestClient folder
Usage instruction: https://vitcompany.atlassian.net/wiki/pages/viewpage.action?pageId=42729475

Usage example:

20

https://vitcompany.atlassian.net/wiki/pages/viewpage.action?pageId=42729475

VIT Recognition System API

21

VIT Recognition System API

22

